

Grid Services from Renewable Generators

Amanda Myott

Market Design Specialist, Energy Market Design

ICAPWG/MIWG

August 31, 2021

Agenda

- Project Background
- Report Highlights
- Appendix: Study Findings (presented on 05/19/21)

Project Background

Previous Presentations

Date	Working Group	Discussion Points and Links to Materials
01-21-21	ICAPWG/MIWG	2021 Market Projects Outlook Presentation https://www.nyiso.com/documents/20142/18559701/2021%20 Market%20Design%20Project%20Outlook.pdf/0094ad10-3eea- bf35-10ce-fb20592a6d33
03-11-21	ICAPWG/MIWG	Kick-off presentation to discuss detailed study scope and seek stakeholder feedback https://www.nyiso.com/documents/20142/19871290/Grid%20Se rvices%20from%20Renewable%20Generators_ICAPWG_MIWG_Ma rch%2011%202021_FINAL_CD.pdf/60a6a045-60bf-5b2e-2b19- 0007ab790e01
05-19-21	ICAPWG/MIWG	Presentation on study findings https://www.nyiso.com/documents/20142/21581747/Grid%20Se rvices%20from%20Renewable%20Generators_MIWG_051921_FIN AL.pdf/aa6974b2-5e6b-03e4-eda5-c95a9e60a0b2

Grid in Transition – A Multifaceted Approach

- Aligning Market Incentives
 - Carbon Pricing
 - Comprehensive Mitigation Review
- Prepare for New Technologies
 - DER Participation Model
 - Energy Storage **Participation Model**
 - Hybrid Co-Located Model
 - Hybrid Aggregation Model
 - Large Scale Solar on Dispatch
- And more....

Aligning Competitive Markets and New York **State Clean Energy Objectives**

- More Granular Operating Reserves
 Regulation Up & Down Services
- Ramping Services
- Grid Services from Renewable **Generators**
- Evolve the Day Ahead and Real-Time Markets to improve managing **Forecast Uncertainty**
- Track certain market metrics to evaluate incentives for flexible resources
- And more...

Valuing Resource & Grid Flexibility

Improving Capacity **Market Valuation**

Enhancements to Resource

Improving Installed Capacity

Resource Ratings to Reflect

Tailored Availability Metric

• Expanding Capacity Eligibility

Adequacy Modeling

MarketIncentives

Review Capacity Market

Reliability Contribution

©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED

Project Scope

- The Grid Services from Renewable Generators project has several key objectives:
 - Describe the relevant Reliability Rules that the NYISO must comply with, per NERC, NPCC, and NYSRC mandates, and how current market rules support those requirements
 - Describe the nature of existing and possible future grid services and how they are procured and/or provided in New York
 - Operating reserves, regulation, voltage support service, black start service, fast frequency response, inertial response, separate regulation up and down, ramping*
 - Discuss the capability of renewable generators to provide various grid services, subject to technological capabilities and Reliability Rules
 - Onshore Wind, Offshore Wind, Utility-Scale Solar, Rooftop Solar, and Run-of-River Hydro
 - Discuss potential market design and/or product revisions that would improve reliable grid operations and possibly enable participation by renewable generators

*The NYISO does not currently have market products for the services listed in blue.

Project Research

- The NYISO conducted this study by reviewing industry literature and conducting industry interviews, the findings of which are summarized on subsequent slides
 - Studies and Reports
 - NREL et al.: <u>Avangrid Renewables Tule Wind Farm Report</u>, 2020
 - NREL: <u>Grid Friendly Renewables Report</u>, 2019
 - EPRI: Ancillary Services in the United States, 2019
 - NREL et al.: <u>Demonstration of Essential Reliability Services by a 200MW Solar</u> <u>Photovoltaic Power Plant Report</u>, 2017
 - Industry Discussions
 - EPRI, NREL, renewable developers, renewable generator engineers, other ISOs (CAISO, SPP, ERCOT, MISO, PJM, Hawaii Electric)

Report Highlights

Report Outline

- The final study report, posted with today's meeting materials, discusses several key topics, including:
 - Description of the selected grid services
 - Relevant reliability rules and their impact on the ability of renewable technologies to provide certain grid services
 - Technological capabilities of the selected renewable resource types to provide the selected grid services
 - Possible market rule changes in response to study findings

Appendix: Study Findings (Presented on 05/19/21)

Reliability Rules

- The NYISO is subject to reliability rules from several organizations (NERC, NPCC, NYSRC), some of which impact the ability of renewable generators to provide wholesale grid services
 - A NPCC reliability rule that is pertinent to this project restricts the NYISO's ability to procure operating reserves from resources whose output may not be sustainable for one hour:
 - "A Balancing Authority's synchronized reserve, ten-minute reserve, and thirty-minute reserve, if activated, shall be sustainable for at least one hour from the time of activation."¹
- The NYISO has not identified any potentially relevant revisions to reliability rules that are in the process of being made

¹NPCC. Regional Reliability Reference Directory #5. R6. Page 7. <u>https://www.npcc.org/content/docs/public/program-areas/standards-and-</u> criteria/regional-criteria/directories/directory-5-reserve-20200426.pdf.

Study Findings

Voltage Support Service

• Renewable Generators are currently eligible to provide Voltage Support Service

Black Start Service

- No demonstration of black start capability has been observed from intermittent renewable resources in the US
 - Further technological development is necessary to enable renewable resources to start and energize the grid without an outside power source

Operating Reserves

- NPCC rules implicitly preclude intermittent resources from providing operating reserves, since this service is not necessarily sustainable for one hour by intermittent resources¹
 - Since run-of-river hydro typically has some ability to store water for later use to generate energy, this resource type can provide operating reserves

1 NPCC. Regional Reliability Reference Directory #5. R6. Page 7. <u>https://www.npcc.org/content/docs/public/program-areas/standards-and-criteria/regional-criteria/directories/directory-5-reserve-20200426.pdf</u>.

Study Findings (cont'd)

Ramping Product

- Regions that have a "ramping" product (CAISO, SPP, MISO) aim to address increased uncertainty driven by renewable integration
- The NYISO will consider the potential need for a ramping product as part of its continued review of the Grid in Transition to balance intermittent resources

Fast Frequency Response (FFR)

- In ERCOT, this product is intended to slow the rate of change of frequency following system disturbances
- FFR may not always be desirable compared to regulation (oscillation effects)
- The NYISO does not see a need for an FFR product due to the strength of the Eastern Interconnection in rectifying frequency disruptions

Study Findings (cont'd)

Inertial Response

- Inverter-based resources can be programmed to provide "synthetic inertia" and a governor-like response similar to primary frequency response
- No regions in the US have a market product for inertial response
- Other RTOs have made efforts to monitor inertia (ERCOT, PJM, SPP)
- The NYISO monitors inertia in its planning studies, which have not identified any inertia-related reliability needs to date²

²NYISO Reliability Planning reports can be found at <u>https://www.nyiso.com/</u>. Navigate to: Library > Reports > Planning Reports > Reliability Planning Process

©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED

Study Findings (cont'd)

- The NYISO's research has found that the creation of separate regulation "up" and regulation "down" products is a potential opportunity to expand grid service eligibility for renewable generators
 - Currently, regulation providers must be able to regulate both up and down
 - Wind and solar generators can provide regulation service through signals from the inverter Power Plant Controller (PPC), similar to curtailment response
 - Run-of-River hydro can provide regulation service by diverting water from turbines
 - Due to reliability concerns, regulation "down" is the only type of regulation service that the NYISO would be able to procure from renewable generators other than Run-of-River hydro
 - Regulation "up" may not be deliverable due to forecast/fuel uncertainty

Additional Considerations for Creating Separate

Regulation "Up" and "Down" Products

- Areas that have separate regulation "up" and regulation "down" (ERCOT, CAISO, and SPP) see few renewables participating due to economic incentives for renewables to provide energy
- Additional research is needed to determine if the system benefits of splitting the current regulation product would be worth the software effort and potential optimization impacts
 - Discussions with other RTOs highlighted optimization run time impacts due to separate regulation products
- The potential bifurcation of regulation service is also discussed in the 2019 Reliability and Market Considerations for a Grid in Transition Report²

² The Reliability and Market Considerations for a Grid in Transition report can be found at: <u>https://www.nyiso.com/documents/20142/2224547/Reliability-and-Market-Considerations-for-a-Grid-in-Transition-20191220%20Final.pdf/61a69b2e-0ca3-f18c-cc39-88a793469d50</u>

Technology-Specific Findings

- Offshore wind is expected to have similar grid service capabilities to onshore wind resources
- Aggregations of rooftop solar could install inverters with advanced controls capable of responding to NYISO dispatch, but this equipment may not be standard
 - The NYISO does not have any of this resource type participating in the wholesale markets today
- Run-of-River hydro is currently eligible to provide regulation service

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

